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We study the superconducting instabilities of a single species of two-dimensional Rashba-Dirac fermions, as
it pertains to the surface of a three-dimensional time-reversal symmetric topological band insulator. We also
discuss the similarities as well as the differences between this problem and that of superconductivity in
two-dimensional time-reversal symmetric noncentrosymmetric materials with spin-orbit interactions. The su-
perconducting order parameter has both s-wave and p-wave components, even when the superconducting pair
potential only transfers either pure singlet or pure triplet pairs of electrons in and out of the condensate, a
corollary to the nonconservation of spin due to the spin-orbit coupling. We identify one single superconducting
regime in the case of superconductivity in the topological surface states �Rashba-Dirac limit�, irrespective of
the relative strength between singlet and triplet pair potentials. In contrast, in the Fermi limit relevant to the
noncentrosymmetric materials we find two regimes depending on the value of the chemical potential and the
relative strength between singlet and triplet potentials. We construct explicitly the Majorana bound states in
these regimes. In the single regime for the case of the Rashba-Dirac limit, there exists one and only one
Majorana fermion bound to the core of an isolated vortex. In the Fermi limit, there are always an even number
�0 or 2 depending on the regime� of Majorana fermions bound to the core of an isolated vortex. In all cases, the
vorticity required to bind Majorana fermions is quantized in units of the flux quantum, in contrast to the half
flux in the case of two-dimensional px� ipy superconductors that break time-reversal symmetry.
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I. INTRODUCTION

Bi2Se3 is an inversion-symmetric layered band insulator
with a bulk gap estimated to be 0.35 eV.1–3 Density-
functional theory predicts that Bi2Se3 supports a single
Rashba-Dirac cone of gapless surface states, a prediction
that has been verified using angle-resolved photoemission
spectroscopy.3,4 This remarkable attribute of Bi2Se3, which
has otherwise only been observed in the insulating alloys
Bi1−xSbx so far,5,6 is the defining property of a three-
dimensional �3D� time-reversal symmetric �TRS� topological
band insulator.7–9 In a recent work, Hor et al.10 have reported
the observation of strongly type II superconductivity in
CuxBi2Se3 below 3.8 K when Cu is intercalated between the
Bi2Se3 layers. They have also proposed to use CuxBi2Se3 as
a mean to induce superconducting correlations for the TRS
topological surface states by the proximity effect.

The surface states in a 3D TRS topological band insulator
are reminiscent of the Bloch states of graphene in that, in
both cases, their density of states vanishes linearly at the
so-called Rashba-Dirac point.11 However, they differ in a
fundamental way from those in graphene. For example, the
surface of Bi2Se3 supports one Rashba-Dirac cone as op-
posed to two in graphene. This difference is a manifestation
of the fact that inversion symmetry is maximally broken on
the surface of Bi2Se3 in that the kinetic energy is dominantly
of the Rashba type, whereas the spin-orbit coupling is for all
intent and purposes negligible for graphene. Consequently,
the surface states of a 3D TRS topological band insulator are
not localized by weak TRS disorder,12–15 whereas Anderson
localization rules in graphene.16

Another difference with graphene, as we shall show in
this paper as a warm up, is that all states in the Rashba-Dirac
sea contribute to the Pauli magnetic susceptibility, which is
anisotropic in that the in-plane and out-of-plane components
differ by a factor of 2. For comparison, the Pauli magnetic
susceptibility is isotropic in spin space and proportional to
the density of states at the Fermi surface in any electron gas
�including graphene� with small breaking of the spin-rotation
symmetry �SRS�. This anisotropy and the fact that the Pauli
susceptibility does not only depend on the density of states at
the Fermi level could potentially be used as a simple diag-
nostic of a limit in which the Rashba coupling is the largest
energy scale.

The main emphasis of this paper will be on the supercon-
ducting instabilities of the surface states in a 3D TRS topo-
logical band insulator and on those in close relatives, i.e.,
two-dimensional �2D� TRS noncentrosymmetric supercon-
ductors in a regime that has been little studied so far. The
theoretical studies of noncentrosymmetric superconductors
with TRS usually assume the hierarchy of energy scales

t � � � � , �1.1�

where t is the inversion-symmetric band width, ��0 is the
spin-orbit coupling that preserves TRS but breaks SRS, and
��0 is the single-particle superconducting gap.17–25 The re-
gime

� � � � t �1.2�

is the one that applies to intrinsic superconducting instabili-
ties of the surface states in a 3D TRS topological band insu-
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lator. We will address the question of whether interesting
phenomena associated to superconductivity occur upon ex-
changing the hierarchies �1.1� and �1.2�.

In the same way that �2D� TRS band insulators have
been classified according to their topological character,26–30

Bogoliubov-de-Gennes �BdG� superconductors have also
been given topological attributes whenever they support gap-
less boundary states in confined geometries.31–33 A necessary
�but not sufficient� condition for a 2D TRS superconductor to
be topologically nontrivial is that it is noncentrosymmetric,
or, equivalently, that it breaks SRS. According to Refs. 31
and 32, a sufficient condition is that, for any weak and local
TRS static disorder, a 2D TRS superconductor in an infi-
nitely long strip geometry supports an odd number of
Kramers’ doublets of gapless edge states of which at least
one wave function is extended along the edge �see also
Refs. 34–36 for varying alternative criteria�.

Applying this definition of a topological superconducting
phase to the superconducting instabilities of surface states in
a 3D TRS topological band insulator immediately leads to a
paradox: What is the meaning of the boundary of a bound-
ary? A more meaningful question to ask might be: What are
the spectral properties of TRS-breaking vortices if the sur-
face states in a 3D TRS topological band insulator support a
type II superconducting order? Do they bind mid gap states
generically, zero modes in particular, or not? These are ques-
tions that we address in this paper.

Defects in a type II superconductor are vortices. On the
one hand, Caroli et al.37 have shown that vortices in an
s-wave TRS and SRS superconductor bind nonvanishing-
energy bound states with a mean level spacing of the order of
the superconducting gap squared divided by the Fermi en-
ergy. On the other hand, Jackiw and Rossi in Ref. 38 found a
single bound state that is exponentially localized around the
core of a unit-flux vortex in a 2D s-wave relativistic super-
conductor with a vanishing density of states �Rashba-Dirac
point�. The energy of this bound state is precisely pinned to
the Fermi energy �see also Ref. 39 for the corresponding
index theorem and Refs. 40 and 41 for examples of nonrel-
ativistic zero modes bound to vortices�. A midgap state
bound to the core of a vortex does not carry an electric
charge, for it is an eigenstate of the generator of the particle-
hole symmetry �PHS� obeyed by any BdG Hamiltonian. It is
thus charge neutral and as such is a physical realization of a
Majorana fermion. Majorana fermions were also found to be
exponentially localized to the core of a vortex in a px� ipy
type II superconductor by Read and Green and by Ivanov in
Refs. 42 and 43, respectively. More importantly, they showed
that these Majorana fermions obey non-Abelian braiding
statistics. Theoretical proposals to nucleate Majorana fermi-
ons have been made relying on 2D TRS noncentrosymmet-
ric superconductors,44–46 or on proximity effects at the 2D
interface between band insulators, superconductors, and
ferromagnets.47–49

We will show in this paper that, when the dispersion is
Rashba-Dirac like, there is a single zero mode bound to the
core of an isolated vortex with unit circulation, and thus a
single Majorana bound state. The mechanism, in the case of
singlet pairing, is precisely that of Jackiw and Rossi.38 This
zero mode remains for arbitrary ratios of triplet and singlet

pairing, with the pairing potentials �t and �s, respectively,
and also as the chemical potential � is varied. The stability
of a singly degenerate zero mode is guaranteed in a system
with particle-hole symmetry in which the zero mode is iso-
lated from the continuous spectrum by a finite energy gap.
Therefore, studying gap-closing surfaces in the parameter
space of the coupling constants characterizing the theory is
of crucial importance in identifying the stability of the Ma-
jorana modes as well as the phase boundaries between dif-
ferent topological phases.

In this paper, we compute the conditions for the closing of
the gap in �t /�s−� space by exploring a one-to-one map-
ping to the normal-state dispersion relation, in which a func-
tion of the ratio �t /�s serves as a reparameterization of the
magnitude of the momenta in the dispersion relation.
Thereto, we show that there are as many lines in �t /�s−�
space at which the gap closes as there are branches in the
dispersion relation. But in the case of the Rashba-Dirac dis-
persion, it is possible to go from one side of a gap vanishing
line to another without crossing it by going through the point
at infinity ��s=0�. Thus, there are not two distinct phases
separated by a transition in this case but there is a single
phase instead.

In the Fermi limit relevant to 2D TRS noncentrosymmet-
ric superconductors, we find that the conditions for the clos-
ing of the spectral gap do separate two gapful phases. These
two regimes are those in which either the singlet or the triplet
pairing controls the physics. The detailed shape of the phase
boundaries is dictated by the normal-state dispersion rela-
tion. The presence of the TRS spin-orbit coupling leads to
interesting effects at certain values of the chemical potential,
for example, re-entrance to the phase dominated by singlet-
pairing physics even when �t /�s is large. We find two Ma-
jorana zero modes bound to an isolated vortex in the triplet
controlled phase but they disappear in the singlet controlled
phase. We find that the vortices that bind this pair of Majo-
rana zero modes have unit flux, as opposed to the half vor-
tices needed in the case of two-dimensional px� ipy super-
conductors that break time-reversal symmetry. The physical
reason for this difference is that, when TRS holds, the spin-
resolved pairing amplitudes �↑↑ and �↓↓ are not independent,
and thus one cannot introduce vorticity in one but not the
other, which is the case for the half vortices in the px� ipy
superconductors. Therefore the pair of Majorana fermions
that we find for full vortices in the triplet case is distinct
from those found by Read and Green42 and Ivanov.43 The
pair of Majorana fermions that we find is not robust to a
generic weak perturbation that breaks translation invariance,
for these Majorana fermions are not related to each other by
the operation of time reversal. This pair of Majorana fermi-
ons is thus unrelated to the one introduced by Qi et al. in
Ref. 32 as a mean to identify the triplet dominated TRS
phase as a nontrivial 2D Z2 topological superconducting
phase. We conclude that, although both superconducting re-
gimes can be distinguished by the even number of Majorana
fermions that an isolated TRS-breaking vortex binds, this
distinction is not topological, for it is not robust to static
disorder, for example.

In addition to this interesting interplay between the singlet
and triplet pair potentials for the existence of Majorana fer-
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mions, superconductivity for surface states in a 3D TRS to-
pological band insulator and noncentrosymmetric materials
has other curious properties, one of which is the following.
Because spin is not a good quantum number, even if the pair
potential contains, say, only the singlet component, the con-
densate will nevertheless have triplet correlations. For ex-
ample, the pairing correlation for electrons �ck↑c−k↑��0 �and
�ck↓c−k↓��0 as well� for ��0, even if �t=0. One measur-
able consequence is that, generically, these superconducting
states would lead to detectable Josephson currents when con-
nected to either conventional s-wave or p-wave supercon-
ductors, manifesting the fact that they have both types of
correlations �even if only the singlet pair potential �s is non-
zero�.

The paper is organized as follows. We define the model in
Sec. II. We show in Sec. III that the normal-state Pauli mag-
netic susceptibility has the remarkable property that it de-
pends on all states in the Fermi sea, not only on the density
of states at the Fermi level, and that it is anisotropic for the
surface states of a 3D TRS topological band insulator. The
dynamical Pauli susceptibility tensor in both the normal and
superconducting states encodes rich magnetoelectric effects
that are responsible for the spin-Hall effect among others. We
study in Sec. IV self-consistently the interplay between the
singlet and triplet components to the superconducting insta-
bilities of the surface states in a 3D TRS topological band
insulator or in 2D noncentrosymmetric materials. The ge-
neric mean-field phase diagram for a TRS two-band BdG
Hamiltonian in the isotropic continuum limit that interpolates
between the regimes �1.1� and �1.2� is constructed in Sec. V.
We find that the Rashba-Dirac limit t /�=0, that pertains to
the surface states of a 3D TRS topological band insulator, is
singular in that there exists only one single phase in the
phase diagram. In Sec. VI A, we construct explicitly the
single Majorana fermion bound to the core of an isolated
vortex in the superconducting phase of the surface states of a
3D TRS topological band insulator. In Sec. VI B, we con-
struct explicitly the pair of Majorana fermions bound to the
core of an isolated vortex in the triplet dominated supercon-
ducting phase of a 2D noncentrosymmetric superconductor.
We conclude with Sec. VII.

II. DEFINITION

A. Normal state

In the continuum limit and in the single-particle approxi-
mation, we define the single-node Rashba-Dirac Hamiltonian

H0k
sur

ª �vRD�k1	2 − k2	1�, �vRD�k� 
 � . �2.1�

The Rashba-Dirac velocity is vRD and we restrict the mo-
mentum �k by the cutoff � /vRD beyond which the surface
states of a TRS topological band insulator merge into the
bulk states. The two-dimensional momentum �k=��k1 ,k2�
couples to the Pauli matrices �= �	1 ,	2�. These Pauli matri-
ces act on the internal space of the spin-1/2 degrees of free-
dom carried by the surface electron �hole� in the laboratory
frame of reference. This coupling between the electron �hole�
crystal wave vector and the spin of the electron �hole� pre-

vents conservation of the electron �hole� spin. However, TRS
is conserved so that the linear dispersion that follows from
Eq. �2.1� is twofold Kramers degenerate.

For the surface states of Bi2Se3, the Rashba-Dirac veloc-
ity is measured to be vRD�5.1�105 m s−1.3 Furthermore,
the Rashba-Dirac energy �the energy measured at the
Rashba-Dirac point� 
RD�0.3 eV is close to the insulating
band gap of 0.35 eV for the bulk states in which the sur-
face states merge.3 Hence, the superconducting gap ��3
�10−4 eV in intercalated CuxBi2Se3 is minute compared to

RD in Bi2Se3. If there are Rashba-Dirac surface states in
CuxBi2Se3 involved in pairing correlations or if there are
Rashba-Dirac surface states in Bi2Se3 involved in pairing
correlations induced by the proximity to superconducting
CuxBi2Se3, they are likely to be far away from the Rashba-
Dirac point. On the other hand, we take the point of view
that it is only a matter of time before a way is found to tune
the chemical potential of the TRS topological surface states
through the Rashba-Dirac point �substituted CuyBi2−ySe3
might be a candidate�. Hence, one goal of this paper is to
characterize pairing correlations among the surface states of
a TRS topological band insulator upon tuning the Fermi en-
ergy through the Rashba-Dirac point �see Fig. 1�.

We shall compare our study of Eq. �2.1� with that of the
two-dimensional Rashba tight-binding model

H0k
2D

ª 
k	0 + gk · �, k � BZ. �2.2a�

Here, 	0 is the unit 2�2 matrix in spin space and the wave
vector k is restricted to the first Brillouin zone �BZ�. It de-
scribes the hopping on a square lattice with the SRS disper-
sion


k = − 2t�cos k1 + cos k2�, t � 0 �2.2b�

and with the Rashba spin-orbit coupling

(b)(a)

FIG. 1. �Color online� �a� Schematic picture of the surface states
of the topological insulator Bi2Se3 �black lines�. The chemical po-
tential � is far from the Rashba-Dirac �nodal� point and close to the
conduction-band continuum �upper gray region� while the Rashba-
Dirac �nodal� point is close to the valence-band continuum �lower
gray region�. �b� Left: one-dimensional cut of the dispersion of the
Rashba-Dirac model defined by Eq. �2.1�. In particular, we study
the case where � is close to the Rashba-Dirac �nodal� point rather
than close to the energy cutoff �� that defines the onset of the
conduction band and the valence band. Right: the expectation val-
ues of the electron spins are perpendicular to their momenta and
oriented in opposite directions for the upper and lower cone �see
Eqs. �3.3b� and �3.3c� at B=0�.
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gk = �	− sin k2

sin k1

 , �2.2c�

say. Our convention throughout this paper will be that �
�0.

An important difference between the surface states of a
3D TRS topological band insulator and the Rashba tight-
binding states is that the surface states span an odd number
less of Fermi surfaces. This is a manifestation of the fermion
doubling that occurs when attempting to regularize a
D-dimensional single Rashba-Dirac cone by a
D-dimensional tight-binding model. The fermion doubling
can only be eliminated by the addition of the Wilson term

H0k
W
ª tW�2 − cos k1 − cos k2�	3, tW � t + � , �2.3�

to the tight-binding Hamiltonian �2.2a� at the cost of break-
ing TRS.

Hamiltonian �2.1� is scale invariant. It then follows that
the density of states per unit area is proportional to the ab-
solute value of the chemical potential � and vanishes at the
Rashba-Dirac point �=0. The effects of this scale invariance
on charge transport, including the orbital effects of a mag-
netic field, are identical to those in graphene in the single
Rashba-Dirac cone approximation, if the Zeeman coupling to
a magnetic field is ignored. In Sec. III, we are going to study
the inherently strong effects of the spin-orbit coupling on the
Pauli magnetic susceptibility. However, before doing so, we
want to include the possibility of a superconducting instabil-
ity that we first treat at the mean-field level without imposing
the condition of self-consistency.

B. Mean-field superconducting state

We rewrite the continuum Hamiltonian �2.1� or the lattice
Hamiltonian �2.2a� in the language of second quantization.
For simplicity, we choose a tight-binding notation. Reverting
notation to the continuum is straightforward. We thus intro-
duce the spinor �k

†= �ck↑
† ,ck↓

† � for electrons in the spin basis

of the laboratory frame of reference and the spinor �̃k
†

= �ak+
† ,ak−

† � in the helicity basis defined below. This gives

H0 = �
k�BZ

�k
†H0;k�k = �

k�BZ
�̃k

†H̃0;k�̃k,

H0;k = �
k − ��	0 + gk · � ,

H̃0;k = 	�k+ 0

0 �k−

 . �2.4a�

The single-particle dispersion is here given by50

�k� = 
k − � � �gk� , �2.4b�

while the transformation between the laboratory basis and
the helicity basis is given by the unitary 2�2 matrix

�k �
1

2

	 1 1

ei�k − ei�k

ª 1


2� 1 1

gk1 + igk2

�gk�
−

gk1 + igk2

�gk�
� ,

�2.4c�

whereby

�k
† = �̃k

†�k
†, �k = �k�̃k, H̃0;k = �k

†H0;k�k. �2.4d�

The �mean-field� BdG Hamiltonian is defined by

H ª �
k�BZ

�k
†	H0;k �k

�k
† − H0;−k

T 
�k

= �
k�BZ

�k
†	 H0;k �k�− i	2�

i	2�k
† − 	2H0;−k

T 	2

�k

= �
k�BZ

�̃k
†	H̃0;k �̃k

�̃k
† − H̃0;−k

T 
�̃k, �2.5a�

where the bispinors �k
†, �k

†, and �̃k
† are given by

�k
† = ��k

†,�−k� = �ck↑
† ,ck↓

† ,c−k↑,c−k↓� ,

�k
† = ��k

†,i	2�−k� = �ck↑
† ,ck↓

† ,c−k↓,− c−k↑� ,

�̃k
† = �ak+

† ,ak−
† ,ei�−ka−k+,− ei�−ka−k−� , �2.5b�

respectively. We have chosen to construct the bispinors �k
†

and �̃k
† from the spinors �k

† and �̃k
†, respectively, and their

time-reversed partners. Thereby, we have to take care of the
action of the time-reversal operation T on the laboratory and
the helicity single-particle states labeled by the wave vector
k and the indices s= ↑ ,↓ and �= �1, respectively. For the
laboratory basis, it is

T �k↑� = + �− k↓�, T �k↓� = − �− k↑� , �2.6�

i.e., it is off-diagonal in the laboratory spin basis. For the
helicity basis,

�k+� =
1

2

��k↑� + e+i�k�k↓�� ,

�k−� =
1

2

��k↑� − e+i�k�k↓�� , �2.7a�

together with

ei�k = − ei�−k �2.7b�

imply that it is

T �k�� = �e−i�−k�− k�� , �2.7c�

i.e., it is diagonal in the helicity internal space but with the
wave vector and helicity-dependent eigenvalue �ei�k that is
odd under the inversion k→−k. Hence, the bispinors �k

† and

�̃k
† follow.
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We parameterize the 2�2 pair-potential matrix by

�k = ��s,k	0 + dk · ���i	2� �2.8a�

in the laboratory frame for the spin degrees of freedom. PHS,
which embodies Fermi statistics within the BdG formulation,
demands that it is an antisymmetric operator, i.e.,

�s,k = �s,−k, dk = − d−k. �2.8b�

TRS imposes the conditions

�s,k = �s,−k
� , dk = − d−k

� . �2.8c�

Throughout this paper, we consider Cooper pairs made of
time-reversed helicity single-particle states from Eq. �2.7c�.
Hence, we take the 2�2 pair-potential matrix

�̃k = 	�̃k+ 0

0 �̃k−


 �2.9a�

to be diagonal in the helicity basis, and it then follows that

�̃k+ = �̃−k+
� , �̃k− = �̃−k−

� , �2.9b�

as a consequence of TRS. Furthermore, we find with the help
of Eq. �2.5b� the 4�4 Hermitian matrix �the complex nota-
tion z=x+ iy and z̄=x− iy is occasionally used�

Hk =�

k − � ḡk �s,k �t,ke−i�k

gk 
k − � �t,ke+i�k �s,k

c.c. c.c. − 
k + � − ḡk

c.c. c.c. − gk − 
k + �
� ,

�2.10a�

where we recall that �kªarg gk and

�s,k =
1

2
��̃k+ + �̃k−� = �s,−k

� ,

�t,k =
1

2
��̃k+ − �̃k−� = �t,−k

� ,

dk =
1

2
��̃k+ − �̃k−�

gk

�gk�
= − d−k

� , �2.10b�

in the �k representation of Eq. �2.5a�.
The fact that the vector dk is parallel to gk is a conse-

quence of our assumption that Cooper pairs are made of
time-reversed helicity single-particle states, i.e., Eq. �2.9a�.
This assumption is justified if the pairing interaction
preserves the symmetry of the noninteracting Hamil-
tonian. Following the literature on noncentrosymmetric
superconductors,22 we are thus assuming that the symmetry
of the noninteracting Hamiltonian is preserved by the self-
consistent inclusion of the pairing interaction.

We also demand that Hamiltonian �2.10a� is single valued
in the BZ. This restricts the triplet pairing �t,k to vanish at
least as fast as �gk�,

lim
�gk�→0

��t,k�
�gk�


 c �2.10c�

for some number c larger than or equal to 0. With our choice

of gauge, �̃k+ and �̃k− or, equivalently, �s,k and �t,k are real
valued. In Sec. VI, where we study TRS-breaking vortices,
we revert instead to complex order parameters to accommo-
date twists in the phases of the singlet and triplet pair poten-
tials. Finally, we observe that the pair-potential eigenvalues

�̃k� = �s,k + �dk ·
gk

�gk�
, � = � , �2.11�

transform according to the same irreducible representation of
the space group. For example, in the isotropic continuum
limit with s-wave pairing they are functions of �k� only.

The BdG Hamiltonian �2.5a� is of the form

H � �
�=�

H� ª �
�=�

�
k�BZ

Hk�,

Hk� = �k�ak�
† ak� + ��̃k��ei�−ka−k�ak� + H.c.� . �2.12�

The mean-field ground state is the state ��mf� annihilated by
H. It is obtained as the direct product ��mf�= ��mf

+ � � ��mf
− �,

where ��mf
� � is annihilated by H� for each of the helicities

�=�.
Each helicity supports quasiparticles obeying the PHS

�relative to the chemical potential� dispersion �Ek� with

Ek� = 
�k�
2 + �̃k�

2 , � = � . �2.13�

However, the ground states ��mf
+ � and ��mf

− � are not indepen-
dent since they are tied to each other by TRS. Indeed, TRS

implies that the relative phase of the pairing potentials �̃k�

with the helicities �=� is locked to be 0 or �, as follows
from the transformation law �2.7c�, i.e.,

Tak�
† T−1 = �e−i�ka−k�

† , Tak�T−1 = �e+i�−ka−k�.

�2.14�

To construct ��mf�, we perform a Bogoliubov transforma-
tion for each helicity index �=� independently. Thus, for
each helicity �=�, we define

�k� ª Uk�ak� − Vk�a−k�
† �2.15a�

with the complex-valued coefficients Uk� and Vk�,

�Uk��2 ª
1

2
	1 +

�k�

Ek�

 ,

�Vk��2 ª
1

2
	1 −

�k�

Ek�

 ,

Uk�

Vk�

= −
�e−i�−k�̃k�

Ek� − �k�

. �2.15b�

Under this transformation
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H = �
k�BZ

�
�=�

Ek��k�
† �k�. �2.16�

The mean-field ground state is then

��mf� = �
�=�

�
k

�Uk� + Vk�ak�
† a−k�

† ��0� �2.17a�

provided

�k���mf� = 0 �2.17b�

holds for all k and all �=�.
By construction, the mean-field ground state �2.17� is

TRS. SRS is, however, broken. Consequently,

��mf�c−k↑ck↑��mf� =
e−i�−k

4
	 �̃k+

Ek+
−

�̃k−

Ek−

 ,

��mf�c−k↓ck↓��mf� =
ei�k

4
	 �̃k+

Ek+
−

�̃k−

Ek−

 ,

��mf�c−k↑ck↓��mf� =
1

4
	 �̃k+

Ek+
+

�̃k−

Ek−

 , �2.18�

are generically nonvanishing �one exception is the Rashba-
Dirac limit 
k=0 at the Rashba-Dirac point �=0� even
though the pair potential may be purely singlet when

�̃k+ = �̃k− �2.19�

or purely triplet when

�̃k+ = − �̃k−. �2.20�

In a superconducting state that preserves SRS, the ground
state has no spin correlations other than that of the pair con-
densate.

III. SUSCEPTIBILITY

A. Static and uniform Pauli magnetic susceptibility at T=0 in
the normal state

We are after the Pauli magnetization per electron induced
by the Zeeman coupling �−B1	1−B2	2−B3	3, where it is
understood that 	3 is the third Pauli matrix and the in-plane
components of the magnetic field are B1 and B2 while the
out-of-plane component B3 is taken along the spin quantiza-
tion axis in the laboratory frame of reference.

To obtain the Pauli magnetization per electron at T=0, we
start from Eq. �2.1� with the Zeeman coupling added

HBk
sur

ª ��vRDk1 − B2�	2 − ��vRDk2 + B1�	1 − B3	3,

�3.1�

compute the expectation value of the spin operator �	1,2,3 /2
for all the Bloch states, and sum these expectation values up
to the chemical potential �. The Pauli susceptibility per elec-
tron then follows by differentiation with respect to B1,2,3 fol-
lowed by setting B1,2,3=0. We set �=vRD=1 to simplify no-
tation.

As long as B1
2+B2

2�0, the eigenvalue

���k� = − � � 
�k1 − B2�2 + �k2 + B1�2 + B3
2 �3.2a�

has the eigenstate

���k� =
1

N��k�
	− k2 − ik1 − B1 + iB2

���k� + � + B3

 �3.2b�

with the normalization

N��k� ª 
2����k� + ������k� + � + B3� . �3.2c�

We observe that the effect of in-plane magnetic fields is to
translate the Fermi sea. The spin expectation values in the
Bloch states are

��
† �k�	3���k� = �

B3


B3
2 + �k̄ + B�2

= �
B3

�k�
�F�B/k̄,B̄/k� + ¯� , �3.3a�

��
† �k�	���k��B3=0 = −

2�k̄ + B�����k� + ��

�k̄ + B�2 + ����k� + ��2
= �

k̄ + B

�k̄ + B�

= �
k̄ + B

�k�
�F�B/k̄,B̄/k� + ¯� , �3.3b�

and

��
† �k�	̄���k��B3=0 = −

2�k + B̄�����k� + ��

�k̄ + B�2 + ����k� + ��2
= �

k + B̄

�k + B̄�

= �
k + B̄

�k�
�F�B̄/k,B/k̄� + ¯� . �3.3c�

Here, we have introduced the complex notations

	 = 	1 + i	2, 	̄ = 	1 − i	2, �3.4a�

for the Pauli matrices,

k = k2 + ik1, k̄ = k2 − ik1, �3.4b�

for the momenta and

B = B1 + iB2, B̄ = B1 − iB2, �3.4c�

for the in-plane components of the magnetic field. We have
also introduced the real-valued function

F�z, z̄� ª 1 −
1

2
�z + z̄� �3.4d�

that comes about to first order in an expansion in powers of
the components of the magnetic field. The magnetization per
electron is obtained by integrating over all single-particle
energies up to the chemical potential �. We conclude that the
Pauli magnetic susceptibility tensor per electron is
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�ab � �ab� ��� − ���� if a = 1,2,

2��� − ���� if a = 3,
� �3.5�

in the noninteracting approximation and at T=0.
The Pauli magnetic susceptibility per electron �3.5� also

holds for the Rashba tight-binding Hamiltonian �2.2a� with
minor modifications provided the limit t /�→0 is taken, �N
is the number of lattice sites�

�ab = �ab�
1/2
N

�
���
�gk�

1

�gk� if a = 1,2,

1

N
�

���
�gk�

1

�gk� if a = 3. � �3.6�

In the opposite limit � / t→0, we cannot use the lattice coun-
terpart to Eq. �3.3a� to compute �33, since our choice for the
spinor representation is singular in this limit. We can how-
ever use the lattice counterparts to Eqs. �3.3b� and �3.3c� to
compute �11 and �22. By isotropy, we then recover the con-
ventional Pauli magnetic susceptibility

�ab � �ab�F��� , �3.7�

where �F��� is the density of states per electron and per spin
of the dispersion 
k. This result remains true to first order in
� / t.

B. Dynamical Pauli susceptibility in the superconducting state

Another remarkable consequence of the spin-orbit cou-
pling is that charge-density and spin-density fluctuations are
coupled, both in the normal and in the superconducting
state.17,51–53 The spin-Hall effect is a consequence of this
coupling.51,52 To quantify this statement, we introduce the
susceptibility tensor in the superconducting state

��̂00�q = −
1

�N
�

k

tr�G0;kX03G0;k+qX03� ,

��̂0d�q = −
1

�N
�

k

tr�G0;kX03G0;k+qXd0� ,

��̂b0�q = −
1

�N
�

k

tr�G0;kXb0G0;k+qX03� ,

��̂bd�q = −
1

�N
�

k

tr�G0;kXb0G0;k+qXd0� , �3.8a�

where the indices b and d run over the values 1, 2, and 3, and

X�� ª 	� � ��, �,� = 0,1,2,3 �3.8b�

with the unit 2�2 matrix �0 and the Pauli matrices � acting
on the particle-hole two-dimensional subspace. According
to the mean-field Hamiltonian in the superconducting
state �2.5a� the single-particle Green’s function is

G0;k ª �− i nX00 + �
k − ��X03 + gk1X13 + gk2X23

+ �s,kX01 + �t,k�ĝk1X11 + ĝk2X21��−1. �3.8c�

Our notation applies to a lattice made of N sites, periodic
boundary conditions are assumed, � is the inverse tempera-
ture �the Boltzmann constant is set to unity�, finally q
= �i!l ,q� and k= �i n ,k� are three vectors with bosonic and
fermionic Matsubara frequencies, respectively, while q and k
belong to the first BZ. It is straightforward to modify this
notation for the case of the continuum limit.

After performing the summation over the fermionic Mat-
subara frequencies in Eq. �3.8a� and with some additional
lengthy algebra, the dynamical Pauli susceptibility tensor
simplifies to

��̂���q =
1

4N
�

k
�

�,��,�,��

�"��
�,���k,q�C��

�,��,�,���k,q

�
fFD��Ek�� − fFD���Ek+q���

�Ek� − ��Ek+q�� + i!l
, �3.9a�

where � ,��=� and � ,�=0,1 ,2 ,3, the single-particle dis-
persion in the superconducting state Ek� is defined in Eq.
�2.13� for the helicities �=�, while

fFD�z� =
1

e�z + 1
�3.9b�

is the Fermi-Dirac function. The vertex is given by �ĝk
�gk / �gk��,

�"00
�,���k,q = 1 + ���ĝk · ĝk+q,

�"b0
�,���k,q = ��ĝb;k+q + �ĝb;k + ���i#abcĝa;kĝc;k+q,

�"0d
�,���k,q = ��ĝd;k+q + �ĝd;k − ���i#adcĝa;kĝc;k+q,

�"bd
�,���k,q = �bd + ���ĝa;kfbd

acĝc;k+q + i#abd��ĝa;k − ��ĝa;k+q� ,

�3.9c�

where the tensor fbd
ac is defined by

fbd
ac
ª �ab�cd − �ac�bd + �ad�bc = fdb

ac . �3.9d�

Finally, the coherence factors are given by

�C00
�,��,�,���k,q = 1 + ���

�k,��k+q,�� − �̃k,��̃k+q,��

Ek+q,��Ek,�
,

�Cb0
�,��,�,���k,q = �C0d

�,��,�,���k,q = �
�k,�

Ek,�
+ ��

�k+q,��

Ek+q,��
,

�Cbd
�,��,�,���k,q = 1 + ���

�k,��k+q,�� + �̃k,��̃k+q,��

Ek+q,��Ek,�
,

�3.9e�

where the single-particle dispersion in the normal state �k,�

and the superconducting pair potentials �̃k,� are defined in
Eq. �2.4b� and in Eq. �2.9a�, respectively. The dynamical
Pauli susceptibility of the normal state is obtained by taking

the limit �̃k,�→0, �=�, supplemented by the replacements
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�Ek�→Ek� and ��Ek+q��→Ek+q�� so as to remove the
particle-hole symmetry.

We then recover the result from Ref. 54. If we further-
more set !l=0 in Eq. �3.9a�, we obtain the static suscepti-
bility of the normal state. At the Rashba-Dirac point, i.e., for
�k�=��gk�, the following components of the static suscepti-
bility vanish: �̂01, �̂02, �̂10, �̂20, �̂13, �̂23, �̂31, and �̂32.

We now consider the isotropic continuum limit �2.1� �the
Rashba-Dirac limit� together with an attractive contact
density-density interaction −�V���r−r��, which induces
purely singlet pairing �s as we will show in Sec. IV A. The
gap equation at the chemical potential � and the inverse
temperature � is

1 = �V��� D� �
�=�

�
�− D

�+ D d
��
�
�� D�

tanh �E��
�/2
2E��
�

�3.10a�

where the “Debye” energy cutoff  D has been introduced,

E��
� ª 
�
 − ���2 + �s
2, �3.10b�

and

��
� ª
�
�

2���vRD�2 �3.10c�

is the Rashba-Dirac density of states per unit area. The tem-
perature dependence of the static Pauli magnetic susceptibil-
ity for an out-of-plane uniform applied magnetic field is then
given by �33=2�11=2�22 with

�33 � �
�=�

� d2k

�2��2

Ek�
2 + �k,��k,−� + �s

2�T�
Ek�

�
1

�k,�
2 − �k,−�

2 tanh
�Ek�

2
. �3.11�

We plot the temperature dependence of the self-consistent
pair potential �s�T� and of �33�T� in Fig. 2. First, we note
that �33�T=0��0. This is a direct consequence of the spin-
orbit coupling.17–21 Second, we note that �33�T� decreases

as a function of temperature beyond the critical tempe-
rature, i.e., when T�Tc. Although the finite value of
�33�T=0� is typical of noncentrosymmetric super-
conductors,17–21 �33�T�Tc� only saturates to a value propor-
tional to the density of state at the Fermi level in the
regime �1.1�. In the regime �1.2� the decrease of
�33�T�Tc� can be understood with the help of Eq. �3.5� if �
is substituted for T to mimic thermal population. Indeed,
Eq. �3.5� implies that the normal-state �33��� at T=0 in-
creases with � if the Fermi level is below the Rashba-Dirac
point, but decreases with � if the Fermi level is above the
Rashba-Dirac point, for the states above the Rashba-Dirac
point give a contribution that cancels part of the susceptibil-
ity coming from the states below the Rashba-Dirac point.

IV. SUPERCONDUCTING INSTABILITIES

A. Density-density interaction

To obtain the BdG Hamiltonian �2.5a� self-consistently,
we consider first a density-density interaction given by

HV ª
1

2�
q

Vq$q$−q, $q ª �
k,s=↑,↓

ck+qs
† cks, �4.1�

where Vq is an even function of momentum. Normal ordering
yields

HV =
1

2�
q

Vq�
k,k�

�
s,s�

ck+qs
† ck�−qs�

† ck�s�cks +
1

2�
q

Vq�
k

�
s

cks
† cks.

�4.2�

After renormalization of the chemical potential and restric-
tion of the normal-ordered interaction to the scattering of
Cooper pairs with vanishing center-of-mass momentum, we
obtain the reduced Hamiltonian

HV
red =

1

2�
k,p

Vk−p�
s,s�

cks
† c−ks�

† c−ps�cps. �4.3�

We show in Appendix A that the reduced interaction �4.3�
has the representation

HV
red =

1

2�
k,p

�
�,��=�1

Vk−pei��p−�k��cos��p − �k� + ����

�ak�
† a−k�

† a−p��ap�� + ¯ . �4.4�

The terms ¯ that were omitted involve pairs of creation or
of annihilation operators of opposite helicities. We ignore
these terms because we are going to perform a mean-field
approximation for Cooper pairs made of time-reversed helic-
ity single-particle states from Eq. �2.7c�.

We define the mean-field superconducting order param-
eters to be

�̃k� ª �ei�−k�a−k�ak���,� = + �̃−k�, �4.5a�

where �=�. The angular bracket represents the statistical
averaging at inverse temperature � and chemical potential �.
We also define the mean-field helicity pairing potentials to be

FIG. 2. �Color online� Temperature dependence of the self-
consistent superconducting gap �red, normalized by the value at
zero temperature� and the in-plane and out-of-plane Pauli magnetic
susceptibility �red, normalized by the maximum of the out-of-plane
susceptibility� for �=5 D and �V��� D�=1. Here,  D is the Debye
cutoff used for the gap equations.
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�̃k� ª
1

2 �
p,��

Vk−p���� cos��p − �k� + 1��̃p�� = �̃−k�,

�4.5b�

where �=�.The mean-field superconducting order param-
eter �4.5a� and the pairing potentials �4.5b� enter the �mean-
field� BdG Hamiltonian of the form �2.12� and obey the self-
consistent conditions

�̃p� = −
�̃p�

2Ep�

tanh��Ep�/2� , �4.6a�

where the single-particle dispersion in the superconducting
state Ep� is defined in Eq. �2.13�.

If the pairing interaction is independent of momentum
�i.e., a contact interaction in space�, the summation over p on
the right-hand side of Eq. �4.5b� cancels the dependence on

�. Hence, both order parameters are then equal �̃k+= �̃k− and
we can see from the transformation �2.10b� that the pairing
potential will be of pure spin-singlet nature. Observe that this
result is independent of the noninteracting part of the Hamil-
tonian, and thus valid for both models �2.1�. It was also
found in the context of 3D noncentrosymmetric supercon-
ductors in Ref. 55.

We have also solved self-consistently the gap equation
with the Dirac dispersion �
k�0� for a pairing interaction
that is isotropic in momentum space Vq=V�q�. When the
chemical potential is much larger than the transition tempera-
ture �����1, we have found that the triplet component never
exceeds the singlet component of the superconducting pair-
ing potential if the pairing interaction V�q� never changes sign
as a function of �q�. The latter is true for most of the com-
monly used model interactions, except Cooper pairing medi-
ated by the Friedel oscillations induced by the screening of
the Coulomb repulsive interaction, for example.56,57

The density-density interaction as considered here might
provide a model for the pairing interaction recently discov-
ered at the superconducting interfaces in LaAlO3 /SrTiO3
�Ref. 58� or in some electrolyte /SrTiO3 �Ref. 59� that feature
a low density and high mobility of the charge carriers.

B. Heisenberg interaction

As a second example, we study the SU�2� preserving
spin-density-spin-density interaction

HH ª

1

2�
q

JqSq · S−q, Sq ª
1

2 �
k;s,s�

ck+qs
† �s,s�cks�,

�4.7�

where Jq is an even function of momentum. Proceeding in
the same way as in Sec. IV A, we obtain the reduced Hamil-
tonian for the scattering of Cooper pairs with vanishing
center-of-mass momentum

HH
red =

1

8�
k,p

�
s1,s2,s3,s4

Jk−p�s1,s4
· �s2,s3

cks1

† c−ks2

† c−ps3
cps4

.

�4.8�

As is shown in Appendix A the reduced interaction �4.8� has
the following representation in the helicity basis

HH
red =

1

16�
k,p

�
�,��=�1

Jk−pei��p−�k��cos��p − �k� − 3����

�ak�
† a−k�

† a−p��ap�� + ¯ �4.9�

The terms ¯ that were omitted, just as in Sec. IV A where
we studied density-density interactions, involve pairs of cre-
ation or of annihilation operators of opposite helicities. We
ignore these terms because we are going to perform a mean-
field approximation with pairs of time-reversed helicity
single-particle states from Eq. �2.7c�.

Again, we define the mean-field superconducting order
parameters to be

�̃k� ª �ei�−k�a−k�ak���,� = + �̃−k�, �4.10a�

where �=� and the angular bracket represents the statistical
averaging at inverse temperature � and chemical potential �.
The mean-field helicity pairing potentials is defined to be

�̃k� ª
1

2 �
p,��

Jk−p���� cos��p − �k� − 3��̃p�� = �̃−k�,

�4.10b�

where �=�.
Together with the superconducting order

parameters �4.10a� they obey the self-consistent
conditions �4.6a�.

The term proportional to � represents the triplet compo-
nent of the pairing potential while the constant term in the
square bracket gives the singlet component. We have solved
self-consistently the gap equation with the Dirac dispersion
�i.e., 
k�0� for a pairing interaction that is isotropic in mo-
mentum space Jq=J�q�. As with the case of the density-
density interaction, we have found under the assumption
�����1 that the triplet component never exceeds the singlet
component of the superconducting pairing potential if the
pairing interaction J�q� never changes sign as a function of �q�.

The Heisenberg interaction is attractive �repulsive� in the
spin-singlet channel and repulsive �attractive� in the spin-
triplet channel for Jq�0 �Jq
0�. In centrosymmetric super-
conductors, this property leads the way toward spin-
fluctuation mediated spin-triplet superconductivity for Jq

0. If inversion symmetry is broken, however, spin-singlet
and spin-triplet pairing channels are not separated and for the
case Jq
0, the interaction is altogether not attractive. Hence,
the Heisenberg interaction will not lead to triplet �dominated�
superconductivity in the same fashion as in centrosymmetric
superconductors.

C. Dzyaloshinskii-Moriya interaction

Finally, we study a spin-density-spin-density interaction
of Dzyaloshinskii-Moriya type, which requires the breaking
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of inversion symmetry to be present. Let the coefficient Dq
be a three vector with vanishing z component for our case.
It shares the symmetry of gq, in particular, it is odd under
q→−q. The Dzyaloshinskii-Moriya interaction is then

HDM ª

1

2�
q

Dq · �Sq ∧ S−q� . �4.11�

The reduced Hamiltonian for the scattering of Cooper pairs
with vanishing center-of-mass momentum reads

HDM
red =

1

8�
k,p

�
s1,s2,s3,s4

Dk−p · ��s1,s4
∧ �s2,s3

�

� cks1

† c−ks2

† c−ps2
cps4

. �4.12�

As is shown in Appendix A, the reduced interaction �4.12�
has the representation

HDM
red =

i

8�
k,p

�
�,��=�1

ei��p−�k�Dk−p · 	�
gp

�gp�
− ��

gk

�gk�

�ak�

† a−k�
† a−p��ap�� + ¯ . �4.13�

Once again, the terms ¯ that were omitted involve a pair of
creation or of annihilation operators of opposite helicities
while we keep only pairs made of time-reversed helicity
single-particle states from Eq. �2.7c�.

The mean-field superconducting order parameters are
again defined to be

�̃k� ª �ei�−k�a−k�ak���,� = + �̃−k�, �4.14a�

where �=� and the angular bracket represents the statistical
averaging at inverse temperature � and chemical potential �.
We also define the mean-field helicity pairing potentials to be

�̃k� ª
1

2 �
p,��

Dk−p · 	��
gp

�gp�
− �

gk

�gk�
�̃p�� = �̃−k�,

�4.14b�

where �=�. Together with the superconducting order
parameters �4.14a� they obey the self-consistent
conditions �4.6a�.

We have solved self-consistently the gap equation with
the Dirac dispersion �
k�0� for the model interaction Dq
=Dgq exp�−gq

2 /a2�, where a and D are parameters. We have
found that, depending on the chemical potential and the cut-
off parameter a, the triplet component can exceed the singlet
component of the superconducting pairing potential. This is
in contrast to the results from the density-density interaction
and the Heisenberg interaction, where the singlet component
is dominant. However, as the Dzyaloshinskii-Moriya interac-
tion arises in second-order perturbation theory from an ex-
change interaction, it should not be considered on its own.

D. Superconductivity with in-plane magnetic field

A well established result for 2D noncentrosymmetric su-
perconductors with the Rashba spin-orbit coupling �2.2c� is
that the superconducting pair potential acquires a real-space

modulation in the presence of a Zeeman coupling to an in-
plane magnetic field.17,23–25 An in-plane magnetic field shifts
the Fermi sea away from the center of the Brillouin zone and
as a result, the electrons with opposite wave vectors are not
degenerate in energy anymore.

A similar effect is expected for the 2D Rashba-Dirac
model subject to this study. We shall demonstrate this for a
momentum-independent density-density interaction as was
discussed in Sec. IV A.

The noninteracting Hamiltonian �2.4a� in the Rashba-
Dirac limit, i.e., for 
k�0, is altered in the presence of an
in-plane magnetic field

B � B1e1 + B2e2, e3 ª e1 ∧ e2, gk � gk1e1 + gk2e2,

�4.15�

according to

H0
B = �

k�BZ
�k

†H0;k
B �k = �

k�BZ
�̃k

†H̃0;k
B �̃k,

H0;k
B = − �	0 + �gk − B� · � ,

H̃0;k
B = 	�k+

B 0

0 �k−
B 
 . �4.16�

The single-particle dispersion is now given by

�k�
B = − � � �gk − B� . �4.17�

Accordingly, the phase factor entering the transformation,
Eq. �2.4c�, between the laboratory basis and the helicity basis
is changed to

ei�k
B

=
gk1 − B1 + igk2 − iB2

�gk − B�
. �4.18�

A pair of electrons on the Fermi surface without magnetic
field with opposite wave vectors k and −k is not degenerate
in energy anymore in the presence of B, for

�k�
B − �−k�

B = � 2
gk · B

�gk�
+ O	 �B�2

�gk�2
 . �4.19�

It might thus be energetically more favorable to pair elec-
trons with the same energy but with a finite center-of-mass
momentum, than to pair electrons with vanishing center-of-
mass momentum. For simplicity, we also assume that only
electrons of a single helicity � form Cooper pairs. From here
on, we denote the center-of-mass momentum of Cooper pairs
by q while k and k� refer to the relative coordinate of the
paired electrons. We assume that a single wave vector q for
the modulation of the pairing potential will be energetically
favorable, rather than a set of degenerate wave vectors. With
these simplifications, the self-consistent gap equation for the

pair potential �̃k��q� at temperature T close to the supercon-
ducting transition temperature and for N sites is
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�̃k,q;� = −
V

2

T

N
�

k�, n

cos	�−k�+q/2
B − �−k+q/2

B

2



� cos	�k�+q/2
B − �k+q/2

B

2

�̃k�,q;�

� Gk�+q/2,i n;�
�0� G−k�+q/2,−i n;�

�0� , �4.20�

where the single-particle Green’s function in the normal state
for electrons with helicity �=� is given by

Gk,i n;�
�0� = −

1

− i n + �k�
B . �4.21�

For s-wave pairing, the pairing potential �̃k��q� is indepen-
dent of k. The gap Eq. �4.21� simplifies to, after performing
the summation over Matsubara frequencies,

1 = −
V

2N
�
k�

cos	�−k�+q/2
B − �−k+q/2

B

2



� cos	�k�+q/2
B − �k+q/2

B

2

 fk�,q;�

B �4.22a�

with the function

fk,q;�
B

ª

tanh
�−k+�q/2��

B

2T
+ tanh

�k+�q/2��
B

2T

2��−k+�q/2��
B + �k+�q/2��

B �
. �4.22b�

In the Rashba-Dirac continuum limit �2.1� the
dispersion �4.17� together with the transformation �4.18� and
the thermal factor �4.22b� obey the symmetries

�k+�q0/2��
B = �−k+�q0/2��

B = �k�
B=0 = �−k�

B=0,

�k+�q0/2�
B = �k

B=0,

fk,�q0/2�;�
B = fk,0;�

B=0 , �4.23�

with q0=2B∧e3 / ��vRD� being proportional to the shift of the
Fermi surface induced by B. Hence, the gap equation for the
superconducting condensate with the center-of-mass momen-
tum q0 in the presence of the in-plane magnetic field B is the
same as the gap equation in the absence of any in-plane
magnetic field for a condensate with vanishing center-of-
mass momentum. A condensate with vanishing center-of-
mass momentum has the largest transition temperature.
Hence, we deduce from the symmetry �4.23� that a supercon-
ducting order parameter with the center-of-mass momentum
q0 nucleates in the presence of an in-plane magnetic field.
The wave vector of the modulated pairing potential is per-
pendicular to the magnetic field in the plane and is indepen-
dent of the chemical potential. It also follows that the critical
temperature of superconductivity is not suppressed by the
magnetic field in the Rashba-Dirac continuum limit �2.1� and
by the consideration of only one helicity.

In contrast to this simple result, the center-of-mass mo-
mentum of Cooper pairs in 2D noncentrosymmetric super-

conductors with the Rashba spin-orbit coupling �2.2c� is se-
lected by a delicate energetical compromise on how the two
helicity-resolved Fermi surfaces are shifted in opposite direc-
tions in momentum space.

V. MEAN-FIELD PHASE DIAGRAM

It is time to explore the mean-field phase diagram that
follows from Hamiltonian �2.10a� in the parameter space
spanned by the choice made for the normal-state dispersion
and for the pair potentials. To this end, we consider the
parameter space spanned by the couplings �, �s, and �t en-
tering the mean-field Hamiltonian. A mean-field phase corre-
sponds to a connected region in parameter space character-
ized by a nonvanishing gap. We shall then introduce in
Sec. VI point defects in the mean-field Hamiltonian �2.10a�,
i.e., superconducting vortices with unit circulation, and com-
pute the parity of the number of zero modes they bind to
characterize the topological nature of the mean-field phases
separated in parameter space by gap-closing boundaries.

For convenience, we recall that the BdG Hamiltonian is,
in the � representation, Eq. �2.10a�,

Hk ª�

k − � Ake−i�k �s,k �t,ke−i�k

Akei�k 
k − � �t,ke+i�k �s,k

�s,k �t,ke−i�k − 
k + � − Ake−i�k

�t,ke+i�k �s,k − Ake+i�k − 
k + �
� ,

�5.1a�

where the normal-state dispersion is specified by


k = 
−k � R, � � R ,

Ak � �gk� = A−k � 0, gk = − g−k � R2,

�k � arctan
gk;2

gk;1
� �0,2�� , �5.1b�

the singlet-pair potential �s,k and the triplet-pair potential
�t,k transform according to any trivial irreducible represen-
tation of the space group consistent with �t,ke�i�k being
single valued. In the isotropic continuum limit, we thus as-
sume that the singlet-pair potential is constant while the
triplet-pair potential �t�k� can be factorized into a real num-
ber �t times some strictly increasing positive function f with
at least a first-order zero at the origin such that �i� it saturates
to unity for large positive argument and �ii� is invertible on
the positive real axis with the inverse f−1, say, for instance,
f�x�ª tanh x, i.e.,

�t�k� = �tf��k�/kt� �5.1c�

for some wavelength kt�0 that defines the size of the core of
the vortex exp�−i��k�� at the origin in k space. The aim of
this section is to identify when the quasiparticle spectral gap
vanishes as a function of the parameters �s, �t, and � for a
given dispersion relation in the isotropic continuum limit,
i.e., we need the eigenvalues of Eq. �5.1�.

To this end, we first square both sides of Eq. �5.1�, finding
the block diagonal form
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Hk
2 = 	Ak 0

0 Ak

 ,

Ak = ��
k − ��2 + Ak
2 + �s

2 + �t,k
2 �	0 + 2��
k − ��Ak + �s�t,k�

�cos �k	1 + 2��
k − ��Ak + �s�t,k�sin �k	2. �5.2�

The four eigenvalues of Hk are

Ek;�,� = � 
�
k − � + �Ak�2 + ��s + ��t,k�2, �5.3�

where �=�. All nonvanishing energy eigenvalues come in
pairs with opposite signs. This spectral symmetry is a conse-
quence of the particle-hole transformation �X�� was defined
in Eq. �3.8b��

X22H−k
T X22 = − Hk. �5.4�

The Hamiltonian Hk also features a helical symmetry given
by

�ĝk1X10 + ĝk2X20�Hk�ĝk1X10 + ĝk2X20� = Hk. �5.5�

Viewing the Rashba spin-orbit coupling as a fictitious mag-
netic field along a k-dependent direction, the helical symme-
try �5.5� reflects the conservation of spin along this direction
in momentum space.

For completeness, TRS is nothing but

X20H−k
� X20 = + Hk �5.6�

in the � basis of Eq. �2.5b� that we have chosen.
Zero modes are vanishing eigenvalues of Hk, i.e., they are

the solutions to

0 = det Hk = ��
k − � + Ak�2 + ��s + �t,k�2�

���
k − � − Ak�2 + ��s − �t,k�2� . �5.7�

There are thus two possibilities to get zero modes. Either

case�+ �: 0 = 
k − � + Ak, 0 = �s + �t,k, �5.8a�

or

case�− �: 0 = 
k − � − Ak, 0 = �s − �t,k. �5.8b�

Equation �5.8a� requires that the �=+ helicity gap vanishes
on the �=+ helicity Fermi surface. Equation �5.8b� requires
that the �=− helicity gap vanishes on the �=− helicity Fermi
surface. The condition


k − � + �Ak = 0 �5.9a�

on the normal-state dispersion determines the Fermi surfaces

FS� ª �k�
k − � + �Ak = 0� . �5.9b�

The condition

�s + ��tfk = 0 �5.10a�

on the pairing potentials determines the momenta for which
the superconducting single-particle gap vanishes

SC� ª �k��s � �tfk = 0� . �5.10b�

Conditions �+� or �−� are satisfied along the points

FS� � SC� � � , � = � �5.11�

�in other words, the Fermi surfaces cross the superconduct-
ing single-particle nodal surfaces�.

A. Isotropic continuum limit

We work in the continuum limit with the upper bound
� and the lower bound −� to the single-particle mean-
field spectrum, as is appropriate for the surface states of
a 3D band insulator. We assume that the SRS dispersion

, the Rashba dispersion A, and profile f of the vortex
exp�−i��k�� at the origin in k space are smooth functions of
�k�. For the analysis to come, it is useful to define the dimen-
sionless quantity

k � �k�/kt . �5.12�

We define the 2D parameter space with �t /�s as the horizon-
tal axis and � as the vertical axis. For any finite positive
singlet pairing potential �s�0, we show

�1� That there are two nonintersecting curves �to simplify
the notation �→%�

�+:�− %,− 1� → R, �t/�s � �+��t/�s� ,

�−:�1,%� → R, �t/�s � �−��t/�s� , �5.13�

defined by the condition �5.8a� for �=+ and �5.8b� for
�=− at which the BdG spectrum �5.3� is gapless.

�2� The curves �� are one-to-one reparameterizations of
the dispersions ����k�� with �=�.

�3� How the two curves �� change upon changing the
topology of the Fermi surfaces.

For the superconducting single-particle gap to vanish, we
must choose

� = − sgn
�s

�t
�5.14a�

in Eq. �5.10a� from which the implicit definition

0 & f�k� = ��s

�t
� �5.14b�

of k follows. Hence, k is the function

k:�1,%� → R, ��t

�s
�→ k	��t

�s
�
ª f−1	��s

�t
�
 ,

�5.15�

which is not defined whenever the superconducting single-
particle gap does not close, i.e., when ��t�
 ��s�. Claims �1�
and �2� follow with the definition

���k� ª 
�k� + �A�k� , �5.16�

where k and � were themselves defined in Eq. �5.14� and
with the momentum core size kt taken to be unity.

To illustrate how the topology of the normal-state disper-
sion changes the curves �� with �=�, we make the �elec-
tronlike� parabolic approximation

SANTOS et al. PHYSICAL REVIEW B 81, 184502 �2010�

184502-12




�k� =
�2�k�2

2m
, m � 0, A�k� = �vRD�k� , �5.17�

and choose the momentum-vortex profile

f�x� = tanh x �5.18�

with the momentum core size kt taken to be unity. We con-
sider the Rashba-Dirac limit

m = % �5.19�

first, as is illustrated in Fig. 3. The two curves ����t /�s�
where the gap vanishes are indicated in Fig. 3. They are
obtained via the reparameterization of the dispersions
����k��, as depicted on the insets on the second and fourth
quadrants. There is a one-to-one correspondence between the
thick lines in the insets and the curves ����t /�s�.

In Fig. 3, we look at the mean-field phases that can be
identified given the gap-closing curves ����t /�s�. Here, one
must notice that taking �t /�s→%, for a given chemical po-
tential � such that the gap does not close, is connected to the
path originating from �t /�s→−%. For instance, one can
send �s→0 so that it changes sign while holding �t constant
but with a given � such that the gap does not close. There-
fore, the regions depicted in Fig. 3 are connected upon fold-
ing the horizontal axis into a circle �the plane into a cylin-
der�. Then, because of the topology of the curves ����t /�s�,
any one region can be connected to any other without cross-
ing these curves, and hence there is a single phase for the
system, which we denote by I.

For any finite curvature of the dispersion 
�k�, i.e.,

0 & m 
 % , �5.20�

we find the boundaries shown in Fig. 4. Again, the two
curves ����t /�s� where the gap vanishes are obtained via
the reparameterization of the dispersions ����k��, as depicted
on the insets on the second and fourth quadrants. We see that
the topology of the curve �+���t /�s�� that tracks the normal-
state dispersion �+��k�� is insensitive to tuning m from infin-
ity to any finite value. This is not so for the topology of the
curve �−���t /�s�� that tracks the normal-state dispersion
�−��k��. This curve is dramatically influenced by the nonmo-
notonous dependence of �−��k�� on �k� for any finite curva-
ture, i.e., any mass m
%. In the Rashba-Dirac limit m=%,

�−���t /�s�� is strictly negative, and �−�1+�→−%. But when
m is finite, �−�1+�→%.

The distinct phases in the m finite case are identified in
Fig. 4. If the regions with �t /�s→ �% are identified, then
the two regions II and III are always separated from each
other by the two curves �����t /�s��. There is no path con-
necting the two regions II and III without ever closing the
mean-field spectral gap: this is a necessary �but not suffi-
cient� condition for these to be two distinct phases.

B. Anisotropic case

The boundaries in the �t-� plane at which the BdG
single-particle spectrum closes for an anisotropic continuum
dispersion or for a two-dimensional lattice are more difficult
to determine. Indeed, a technical difficulty brought about by
the loss of continuous rotational symmetry is that it is not
possible anymore to characterize the nodes of the normal-
state dispersion or the nodes of the superconducting gaps
with a single wave number. This could result in these bound-
aries acquiring a thickness �i.e., a finite area�.60

For a 2D lattice model, a qualitative difference with the
continuum limit that is of no relevance to this section is the
fermion doubling and its consequences for the existence and
the stability of Majorana fermions in the core of supercon-
ducting vortices. This is the subject of the ensuing section in
which we search for Majorana modes in the core of defects
�vortices� of the superconducting order parameter and we
probe their stability under adiabatic changes of the bulk pa-
rameters �i.e., far away from the vortices�.

VI. MAJORANA FERMIONS

Caroli et al. showed in Ref. 37 that isolated vortices in a
weakly coupled type II s-wave superconductor with TRS and
SRS support a discrete set of finite-energy bound states with
a level spacing of order of the ratio of the squared single-
particle bulk superconducting gap to the bandwidth. There is
no bound state at the Fermi energy bound to the core of
vortices in this case.

Jackiw and Rossi showed in Ref. 38 that, in two
space and one time dimensions quantum electrodynamics
�QED2+1� coupled to one scalar Higgs field, an isolated static
defect in the Higgs field, i.e., a single vortex with vorticity N,

FIG. 3. �Color online� Mean-field phase boundary in the
Rashba-Dirac limit, Eq. �5.19�.

FIG. 4. �Color online� Mean-field phase boundary away from
the Rashba-Dirac limit, i.e., when Eq. �5.20� holds.
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supports N bound states that are all pinned to the zero energy.
These N bound states are N Majorana fermions. An index
theorem for this result was proved by Weinberg.39

Read and Green42 showed that a two-dimensional chiral
px� ipy superconductor supports a Majorana mode bound to
the core of an isolated half vortex. We are going to show that
�i� an isolated vortex with unit vorticity in the singlet-pair
potential binds a single Majorana mode in region I of Fig. 3,

�ii� an isolated vortex with unit vorticity in the triplet-pair
potential binds two Majorana modes in region II of Fig. 4,
and �iii� isolated vortices in region III of Fig. 4 do not bind
Majorana fermions. We will start by reviewing the derivation
of the Jackiw-Rossi Majorana mode that applies to region I
of Fig. 3. We will then discuss region II and III in Fig. 4.

We work in the isotropic continuum limit with the Hamil-
tonian in the � representation �2.10a� given by

Hvor ª�
�k, k̄� �vRDk̄ �s�z, z̄� 1

2
��t�z, z̄�, f	 �k�

kt

 k̄

�k�
�

�vRDk 
�k, k̄�
1

2
��t�z, z̄�, f	 �k�

kt

 k

�k�� �s�z, z̄�

H.c. H.c. − 
�k, k̄� − �vRDk̄

H.c. H.c. − �vRDk − 
�k, k̄�

� . �6.1a�

Here, the SRS normal-state dispersion is parabolic


�k, k̄� ª
�2�k�2

2m
− � , �6.1b�

where the real valued � is the chemical potential. Moreover,
the singlet-pair potential �s�z , z̄� has a unit vortex at the ori-
gin of the complex-z plane with the characteristic core size �s
and saturates to the bulk value �s for �z���s, as does the
triplet-pair potential �t�z , z̄� with the characteristic core size
�t and the bulk value �t for �z���t. The bulk values �s and
�t share a common phase that can be removed by a global
gauge transformation up to a relative sign. The function f
that guarantees single valuedness of the Hamiltonian was
defined in Eq. �5.1c�. The anticommutators in the antidiago-
nal are needed since translation invariance has been broken.
We are using the complex notation

k ª k1 + ik2, k̄ ª k1 − ik2,

z ª z1 + iz2, z̄ ª z1 − iz2, �6.2a�

together with the algebra

�za,kb� = i�ab, a,b = 1,2, �6.2b�

or, equivalently,

�z, k̄� = �z̄,k� = 2i, �z,k� = �z̄, k̄� = 0. �6.2c�

A representation of the algebra �6.2c� is given by

k = − 2i�z̄, k̄ = − 2i�z. �6.2d�

The representation dual to Eq. �6.2d� is

z = 2i�k̄, z̄ = 2i�k. �6.2e�

We shall rely on the polar coordinate representation

k = 'e+i� �6.3�

in terms of which

z = 2i�k̄ = ie+i�	�' +
i

'
��
 ,

z̄ = 2i�k = ie−i�	�' −
i

'
��
 . �6.4�

We choose to represent z, z̄ as differential operators of func-

tions of k, k̄ instead of the other way around because this can
bring a simplification in the solution of the zero modes. By
solving for the wave functions of the zero modes in momen-
tum space, we take advantage of the fact that we have a
first-order differential equation instead of a second-order
one, which would be the case had we chosen to solve for the
wave functions in position space. This simplification works
because we deform the profile of the vortex without chang-
ing the fact that the solutions are precisely at energy E=0, as
we discuss below.

Instead of facing the difficulty to solve analytically for the
spectrum of the BdG Hamiltonian �6.1�, we are thus going to
make approximations that are motivated by the mean-field
phase diagram of Sec. V.

We are first going to take the Rashba-Dirac limit at �
=0 �the Rashba-Dirac point� without triplet-pair potential,
�t=0. This is nothing but the origin of region I in Fig. 3. In
this limit, Hamiltonian �6.1� is the direct sum of two 2�2
Hamiltonians.

We are then going to take the Fermi limit vRD=0 with
��0 without singlet-pair potential, �s=0, i.e., the vertical
half line at infinity in region I of Fig. 3. In this limit, Hamil-
tonian �6.1� is again the direct sum of two 2�2 Hamilto-
nians.
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Even after these simplifications, the spectrum with a vor-
tex at the origin is difficult to compute. One must solve a
system of two coupled partial differential equations that de-
pends on the nonuniversal details encoded by the profile of
the vortices in the superconducting pair potentials and by the
profile f for the vortex in the d vector. This microscopic
information does influence the discrete spectrum that repre-
sents the bound states with nonvanishing energies attached to
the core of the vortex. For example, if the profile of the
vortex is deep due to a large bulk gap and narrow due to a
small characteristic size, there should be very few bound
states with nonvanishing energies �see Fig. 5�. On the other
hand, in the opposite limit of a shallow and smooth profile
for the vortex, many bound states with nonvanishing ener-
gies extending far away from the vortex core are to be ex-
pected �see Fig. 5�.

However, we are not after the full spectrum of states
bound to the core of a vortex. We are only seeking the con-
ditions under which Majorana bound states, i.e., bound states
pinned at the normal-state chemical potential, are present.
The very existence of a Majorana state does not depend on
the profiles of the vortices in real and momentum space as
long as the nonvanishing energy spectrum of bound states
remains discrete and separated from the zero energy. This
suggests choosing the vortex profile

�s,t�z, z̄� = �s,t
z

�s,t
�6.5a�

for the singlet �s� or triplet �t� component of the pair potential
in real space, respectively, and the vortex profile

f	 �k�
kt

 =

�k�
kt

�6.5b�

for the d vector in momentum space. This approximation has
the merit of linearizing the spectral eigenvalue problem.

A. Rashba-Dirac limit

The Rashba-Dirac limit is defined by the condition

m = % . �6.6a�

The Rashba-Dirac-point limit is defined by the additional
condition

� = 0. �6.6b�

In this limit and when the singlet-pair potential vanishes, the
bulk gap closes so that vortices in the triplet-pair potential
are ill defined.

In the limit �6.6� and when the triplet-pair potential van-
ishes, after setting �=vRD=1,

Hvor ª�
0 k̄

�s

�s
z 0

k 0 0
�s

�s
z

H.c. 0 0 − k̄

0 H.c. − k 0

� �6.7a�

decomposes into the direct sum of the 2�2 Hermitian op-
erators

Hvor
�1�

ª� k̄
�s

�s
z

�̄s

�s
z̄ − k � �6.7b�

and

Hvor
�2�

ª� k
�s

�s
z

�̄s

�s
z̄ − k̄ � . �6.7c�

Jackiw and Rossi showed that Hamiltonian �6.1a� with a
vortex in �s�z , z̄� satisfying �s
% and ��s�z , z̄���z�→%
%,
supports one and only one bound state and that this bound
state is pinned to the chemical potential, i.e., to the midgap
of the BdG Hamiltonian. We will show explicitly that Hamil-
tonian �6.7�, with an unbounded vortex profile, also has a
singly degenerate solution, and thus there is one and only
one Majorana fermion in the Rashba-Dirac limit at the
Rashba-Dirac point if the pair potential is pure singlet. The
stability of this Majorana fermion away from the Rashba-
Dirac point or in the presence of a triplet pair potential is
guaranteed by the fact that the particle-hole symmetry of the
eigenvalue spectrum precludes the migration of the zero
mode as long as the gap does not close. For large values of
the chemical potential, it is natural to anticipate that many
more bound states will have peeled off from the continuum
with a level spacing à la Caroli-de-Gennes. This expectation
is consistent with the computation from Ref. 61 of the states
bound to a vortex as a function of the chemical potential for
pure-singlet superconducting graphene.

Proof. Let

c ª
�s

�s
. �6.8�

We seek the solutions to

0 = k̄u�1� + czv�1�,

FIG. 5. �Color online� Qualitative comparison of the bound-state
spectra of a deep and narrow vortex �left� and a wide and shallow
vortex �right�. While the former supports only few finite-energy
bound states �blue�, in the spectrum of the latter more states are
allowed. However, the existence of a zero-energy mode �red� is
independent of the details of the regime.
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0 = c̄z̄u�1� − kv�1�, �6.9a�

and

0 = ku�2� + czv�2�,

0 = c̄z̄u�2� − k̄v�2�, �6.9b�

respectively. If we take the complex conjugate of the second
condition in Eqs. �6.9a� and �6.9b�, respectively, we get

0 = k̄u�1� + czv�1�,

0 = − k̄v̄�1� + czū�1�, �6.10a�

and

0 = ku�2� + czv�2�,

0 = − kv̄�2� + czū�2�, �6.10b�

respectively. For any j=1,2, if

	u�j��k, k̄�

v�j��k, k̄�

 �6.11�

is a zero mode, so is

�	v̄�j��− k,− k̄�

ū�j��− k,− k̄�

 . �6.12�

Hence, we try the ansatz

��
�j��k, k̄� ª 	 u�j��k, k̄�

� ū�j��− k,− k̄�

 , �6.13a�

where

0 = k̄u�1��k, k̄� + � � �czū�1��− k,− k̄�

= 'e−i�u�1��',�� + � � �ice+i�	�' +
i

'
��
ū�1��',� + ��

�6.13b�

and

0 = ku�2��k, k̄� + � � �czū�2��− k,− k̄�

= 'ei�u�2��',�� + � � �ice+i(	�' +
i

'
��
ū�2��',� + �� .

�6.13c�

We choose a gauge in which

c̃ ª ic �6.14�

is real and make the ansatz

u�
�1��',�� = ei�w�

�1��'� ,

u�
�2��',�� = w�

�2��'� , �6.15a�

where the real-valued w�
�j��'� satisfy

0 = �' + � � �c̃	�' +
1

'

�w�

�1��'� �6.15b�

and

0 = �' + � � �c̃�'�w�
�2��'� , �6.15c�

respectively. The formal solutions to Eqs. �6.15b� and �6.15c�
are

w�
�1��'� = w�

�1��'0�exp��
'0

'

d'��� � �
'�

c̃
−

1

'�
��

�6.16a�

and

w�
�2��'� = w�

�2��'0�exp�− �
'0

'

d'�� � �
'�

c̃ � , �6.16b�

respectively. Only

wsgn c̃
�2� �'� = wsgn c̃

�2� �'0�exp	−
'2 − '0

2

2�c̃�

 �6.17a�

is normalizable. We conclude that

�sgn c̃�',�� ª�
1

0

0

sgn c̃
�wsgn c̃

�2� �'� �6.17b�

is a Majorana state with the eigenvalue sgn c̃ under the
particle-hole transformation �5.4�. The uniqueness of this
Majorana state, up to a normalization factor, can be proved
along the same lines as is done in Appendix B. �

B. Fermi limit

The Fermi limit is defined by the condition

vRD = 0. �6.18�

In this limit and when the triplet-pair potential vanishes, iso-
lated vortices support finite-energy Caroli-de-Gennes-
Matricon bound states in the weak-coupling limit �s /�)1.
No Majorana fermions are to be found tied to the core of an
isolated vortex.

In the limit �6.18� with a vanishing singlet-pair potential,

Hvor =�

�k, k̄� 0 0

�t

2�tkt
�z, k̄�

0 
�k, k̄�
�t

2�tkt
�z,k� 0

0 H.c. − 
�k, k̄� 0

H.c. 0 0 − 
�k, k̄�

�
�6.19�

decomposes into the direct sum of the 2�2 Hermitian op-
erators
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Hvor
�1�

ª� 
�k, k̄�
�t

2�tkt
�z, k̄�

�̄t

2�tkt
�z, k̄�† − 
�k, k̄� � �6.20a�

and

Hvor
�2�

ª� 
�k, k̄�
�t

2�tkt
�z,k�

�̄t

2�tkt
�z,k�† − 
�k, k̄� � . �6.20b�

We claim that Hamiltonian Hvor supports two normalized
zero modes if and only if �iff� the chemical potential ��0.

Proof. Define the short-hand notation

c ª
�t

�tkt
� C . �6.21�

We need

�z, k̄� = zk̄ + k̄z = 2k̄z + �z, k̄� = 2k̄z + 2i �6.22�

and

�z, k̄�† = kz̄ + z̄k = 2kz̄ + �z̄,k� = 2kz̄ + 2i . �6.23�

Equation �6.20� becomes

Hvor
�1� = 	 
�k, k̄� c�k̄z + i�

c̄�kz̄ + i� − 
�k, k̄�

 �6.24a�

and

Hvor
�2� = 	
�k, k̄� ckz

c̄k̄z̄ − 
�k, k̄�

 . �6.24b�

We are going to show that operator �6.24a� has one and only
one zero mode iff ��0. We will then show that the same is
true for operator �6.24b�.

We seek a solution to

0 = Hvor
�1�	u�1�

v�1� 
 . �6.25�

We must solve

0 = 
�k, k̄�u�1� + c�k̄2i�k̄ + i�v�1�, �6.26a�

0 = c̄�k2i�k + i�u�1� − 
�k, k̄�v�1�. �6.26b�

If we take the complex conjugate of Eq. �6.26b�, we get

0 = 
�k, k̄�u�1� + c�k̄2i�k̄ + i�v�1�, �6.27a�

0 = − c�k̄2i�k̄ + i�ū�1� − 
�k, k̄�v̄�1�. �6.27b�

We thus infer that a solution to Eq. �6.25�, if it exists, is
given by

��
�1� = 	 u�

�1�

� ū�
�1� 
 , �6.28a�

where u�
�1� is the solution to

0 = 
�k, k̄�u�
�1� + � � �c�k̄2i�k̄ + i�ū�

�1�. �6.28b�

Zero modes, if they exist, can be labeled by their angular
momentum. We seek a zero mode with vanishing angular
momentum, i.e., independent of �. We must then solve

��
�1��'� = 	 u�

�1��'�
� ū�

�1��'�

, 0 & ' 
 % , �6.29a�

where u�
�1� is the solution to

0 = 
�'�u�
�1� + � � ��ic��'�' + 1�ū�

�1�. �6.29b�

With the help of a global gauge transformation, we can al-
ways choose c so that

c̃ ª ic �6.30�

is real valued. Hence,

0 = 
�'�u�
�1��'� + � � �c̃�'�' + 1�ū�

�1��'� �6.31�

with 0&'
% admits a purely real or a purely imaginary
solution since all coefficients of this first-order differential
equation are real valued. We choose the real-valued solution.
We divide Eq. �6.31� by �� �c̃' to obtain the condition

0 = ��' + �1 + � � �

�'�

c̃
� 1

'
�u�

�1� �6.32a�

whose formal solution is given by

u�
�1��'� = u�

�1��'0�exp�− �
'0

' d'�

'�
�1 + � � �


�'��
c̃

�� .

�6.32b�

The formal solution �6.32b� is admissible iff it is normal-
izable, i.e., if

�
0

%

d''�u�
�1��'��2 
 % . �6.33�

Define

F��'� ª �
'0

' d'�

'�
�1 + � � �


�'��
c̃

�
= �1 − � � �

�

c̃
�ln

'

'0
+ � � �

'2 − '0
2

4mc̃
. �6.34�

For large ',

F��'� � � � �
'2

4mc̃
�6.35�

so that normalizability imposes the choice

� = sgn c̃ �6.36�

and the formal solution �6.32b� becomes
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usgn c̃
�1� �'� = usgn c̃

�1� �'0� � 	 '

'0

��/�c̃��−1

� e−�'2−'0
2�/4m�c̃�.

�6.37�

For small ',

Fsgn c̃�'� � 	1 −
�

�c̃�
ln
'

'0
�6.38�

so that normalizability demands convergence of

�
0

'0

d''2��/�c̃��−1, �6.39�

i.e.,

� � 0. �6.40�

We conclude that for any choice of gauge such that c̃� ic is
real valued

�sgn c̃
�1� �'� = 	 usgn c̃

�1� �'�

�sgn c̃�ūsgn c̃
�1� �'� 
, 0 & ' 
 % ,

�6.41a�

where

usgn c̃
�1� �'� = usgn c̃

�1� �'0� � 	 '

'0

��/�c̃��−1

� e−�'2−'0
2�/4m�c̃�

�6.41b�

is a normalizable Majorana mode iff ��0. Observe that
�sgn c̃

�1� �k� is an eigenstate with the eigenvalue −sgn c̃ of the
particle-hole transformation defined in Eq. �5.4�, i.e.,

X22�sgn c̃
�1�� �− k� = − sgn c̃�sgn c̃

�1� �k� . �6.42�

To show that solution �6.41� is unique, up to a normaliza-
tion, one expands Eq. �6.25� in polar harmonics labeled by
the angular quantum number n�Z �see Appendix B�. Modes
with angular quantum number �n are pairwise coupled. A
formal zero mode of the form Eq. �6.41� whereby the func-
tion u is substituted by a doublet, i.e.,

U�,n
�1� �'� = exp�− F�,n

�1� �'��U�,n
�1� �'0� �6.43a�

with

F�,n
�1� �'� = �

'0

' d'�

'�
G�,n

�1� �'�� �6.43b�

and G�,n
�1� �'�� both 2�2 matrices, follows. However, it is not

normalizable.
It is time to seek a solution to

0 = Hvor
�2�	u�2�

v�2� 
 . �6.44�

We must solve

0 = 
�k, k̄�u�2� + ck2i�k̄v
�2�, �6.45a�

0 = c̄k̄2i�ku
�2� − 
�k, k̄�v�2�. �6.45b�

If we take the complex conjugate of Eq. �6.45b�, we get

0 = 
�k, k̄�u�2� + ck2i�k̄v
�2�, �6.46a�

0 = − ck2i�k̄ū
�2� − 
�k, k̄�v̄�2�. �6.46b�

We thus infer that a solution to Eq. �6.44�, if it exists, is
given by

��
�2� = 	 u�

�2�

� ū�
�2� 
 , �6.47a�

where u�
�2� is the solution to

0 = 
�'�u�
�2� + � � �c̃'e2i�	�' +

i

'
��
ū�

�2�. �6.47b�

When expanding the solution in angular momentum modes
exp�in��, n�Z, the mode n=1 turns out to be the only mode
that does not couple to other modes via Eq. �6.47b�. The
ansatz

usgn c̃
�2� �',�� = ei�wsgn c̃

�2� �'� �6.48a�

casts Eq. �6.47b� in the same form as Eq. �6.31� so that

wsgn c̃
�2� �'� = wsgn c̃

�2� �'0� � 	 '

'0

��/�c̃��−1

� e−�'2−'0
2�/4m�c̃�.

�6.48b�

Observe that �sgn c̃
�2� �k� with u�

�2��k� given in Eq. �6.48� is an
eigenstate with the eigenvalue −sgn c̃ of the particle-hole
transformation defined in Eq. �5.4�, i.e.,

X22�sgn c̃
�2�� �− k� = − sgn c̃�sgn c̃

�2� �k� . �6.49�

It remains to verify that the spinor �6.8� is single valued
in real space, i.e., that the Fourier transform of the
function �6.48a� vanishes at the origin of the complex-
z=r exp�i*� plane. Hence, we need the small r expansion of
the Fourier transform

usgn c̃
�2� �r,*� � �

0

%

d''�
0

2�

d�eir' cos��−*� � ei�wsgn c̃
�2� �'�

= ei*�
0

%

d''�
0

2�

d(eir' cos ( � ei(wsgn c̃
�2� �'� .

�6.50�

The ' integral is well behaved for large ' because of the
Gaussian factor. Moreover, an upper cutoff to this integral
can be used up to Gaussian accuracy. If so, a Taylor expan-
sion of exp�ir' cos (� in the integrand can be performed to
capture the leading dependence on r. The integral over (
eliminates the term independent of r so that

usgn c̃�r,*� � rei* + O�r2� �6.51�

is single valued at the origin r=0 and thus an admissible
solution.
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We conclude that there are two Majorana states

�sgn c̃�',�� = �A�
1

0

0

sgn c̃
� + B�

0

ei�

sgn c̃e−i�

0
��usgn c̃�'�

�6.52�

�A and B are real numbers� bound to the core of an isolated
vortex satisfying the linear profile �6.5� in the triplet-pair
potential. The Majorana state weighted by the coefficient A
is related to the Majorana state weighted by the coefficient B
through the helical symmetry defined in Eq. �5.5� and not by
the operation of time reversal defined in Eq. �5.6�. This is
expected since TRS is broken by the vortex. �

Lu and Yip in Ref. 44 �see also Sato and Fujimoto in
Ref. 45� also found two Majorana fermions bound to the core
of a vortex with unit vorticity in a weakly coupled �i.e., a
large chemical potential compared to the pairing potentials�
2D TRS noncentrosymmetric superconductor with dominant
triplet-pair potential. Their first zero mode is the real-space
counterpart to the mode �6.41�. Their second zero mode car-
ries angular momentum n=1 and is the real-space counter-
part to the mode �6.48�.

In Ref. 32, Qi et al. have studied zero modes bound to the
core of vortices in TRS px� ipy superconductors as well.
Viewing the system as a combination of a px+ ipy superfluid
�which corresponds to Hvor

�1� � and its time-reversed partner, a
px− ipy superfluid �which corresponds to Hvor

�2� �, they simulta-
neously introduced a vortex in the former and an antivortex
in the latter. In contrast to our study of a TRS-breaking vor-
tex, this configuration of a pair of vortex and antivortex is
TRS and the two Majorana modes obtained by Qi et al. are
connected by the operation of time reversal. Whereas the
Majorana fermions �6.52� are not robust to a generic pertur-
bation that breaks translation invariance, the TRS-protected
pair of Majorana fermions obtained by Qi et al. is robust to
any weak perturbation that preserves TRS.

C. Away from the Rashba-Dirac and Fermi limits

Majorana fermions tied to vortices are robust to continu-
ous changes in the BdG Hamiltonian as long as the spectral
gap does not close, for all nonvanishing energy eigenvalues
occur pairwise with the energies �E owing to the particle-
hole symmetry �5.4�. There will be one �two� Majorana fer-
mion�s� tied to the core of an isolated vortex carrying vortic-
ity one in regions I �II� of Fig. 3 �Fig. 4�. By the same
reasoning, region III of Fig. 4 does not admit Majorana fer-
mions bound to the core of unit vortices.62 Regions II and III
in Fig. 4 differ by the even number of Majorana fermions
that TRS-breaking vortices can accommodate. This distinc-
tion is not robust to any generic perturbation that breaks
translation symmetry, for it is not protected by TRS.

VII. DISCUSSION

In this paper, we studied the possible superconducting
phases of the surface states of 3D TRS topological insulators

and 2D TRS noncentrosymmetric metals. Both systems share
remarkable magnetoelectric effects, however their bulk su-
perconducting phases differ in important ways. The differ-
ence stems from the topology of the bands. Surface states of
3D TRS topological insulators are topologically equivalent
to a single species of Rashba-Dirac fermions while noncen-
trosymmetric metals are Fermi like with two Fermi surfaces
for large chemical potentials. As a result, we find that there is
a unique superconducting phase in the case of the Rashba-
Dirac limit while there are two phases in the Fermi limit.

We studied the phase diagram as a function of the
strengths of the mean-field pair potentials �s �singlet� and �t
�triplet�, as well as � �chemical potential�. In the Rashba-
Dirac limit, a single Majorana fermion is bound to the core
of an isolated and TRS-breaking vortex with unit winding
number in the superconducting order parameter everywhere
in the phase diagram in the �t /�s−� plane, with the excep-
tions where the gap closes. The gap-closing lines do not
separate distinct phases in the Rashba-Dirac limit, because
one can always connect two sides of a gap-closing line by,
instead of crossing the line directly, going through the point
at infinity ��s=0� without closing the gap. Evidently, gap
closing is a necessary but not sufficient condition to have
two distinct phases.

In the Fermi limit, we find instead that there are two su-
perconducting phases. These phases correspond to singlet or
triplet dominated physics. In the singlet-dominated phase, we
find that an isolated TRS-breaking vortex with unit winding
number �a full vortex� does not bind Majorana fermions. In
the triplet-dominated phase, we find a pair of Majorana fer-
mions bound to an isolated full vortex. Hence, these Majo-
rana states have a distinct origin from those found for half
vortices in the px� ipy superconductors. The physical reason
for this difference is that TRS forces the spin-resolved pair-
ing amplitudes �↑↑ and �↓↓ to be related, and thus one cannot
introduce vorticity in one but not the other, as can be done
with half vortices in the px� ipy superconductors.
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APPENDIX A: PROOF OF Eqs. (4.4), (4.9), and (4.13)

All reduced interaction Hamiltonians �4.3�, �4.8�, and
�4.12� have summands which can be represented in terms of
the helicity basis using the transformation �2.4d�. To do this
explicitly, let � and � run from 0 to 3 with 	0 the
2�2 unit matrix and write

��k
†	����p���−k

† 	����−p�

= �
s1,s2,s3,s4

	s1,s4

��� 	s2,s3

��� cks1

† c−ks2

† c−ps3
cps4

+ ¯

= ��̃k
†�k

†	����p�̃p���̃−k
† �−k

† 	����−p�̃−p� . �A1�
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The ¯ stands for two-fermion contributions that result from
anticommuting the operators.

We first evaluate the matrix products,

��k
† 	�0���p = exp	i

�p − �k

2

�cos

�p − �k

2
	�0�

− i sin
�p − �k

2
	�1�� ,

��k
† 	�1���p = � exp	i

�p − �k

2

�cos

�p + �k

2
	�3�

+ sin
�p + �k

2
	�2�� ,

��k
† 	�2���p = � exp	i

�p − �k

2

�cos

�p + �k

2
	�2�

− sin
�p + �k

2
	�3�� ,

��k
† 	�3���p = exp	i

�p − �k

2

�cos

�p − �k

2
	�1�

− i sin
�p − �k

2
	�0�� . �A2�

Here, we observe that any of the right-hand sides in Eq. �A2�
involves one diagonal and one off-diagonal Pauli matrix. At
this point we can partly settle our constraint to have only
Cooper pairs made of electrons of the same helicity. For this

case, only products of two diagonal or two off-diagonal
terms contribute in the product, Eq. �A1�.

Second, we introduce the notation

+k��p�� ª ak�
† a−k�

† a−p��ap��, �,� = � , �A3�

in terms of which we find

�̃k
†	�0��̃p�̃−k

† 	�0��̃−p = + �̃k
†	�3��̃p�̃−k

† 	�3��̃−p

= +k+�p+ + +k−�p− + ¯ , �A4a�

�̃k
†	�1��̃p�̃−k

† 	�1��̃−p = − �̃k
†	�2��̃p�̃−k

† 	�2��̃−p

= +k+�p− + +k−�p+ + ¯ , �A4b�

�̃k
†	�0��̃p�̃−k

† 	�3��̃−p = + �̃k
†	�3��̃p�̃−k

† 	�0��̃−p

= +k+�p+ − +k−�p− + ¯ , �A4c�

�̃k
†	�1��̃p�̃−k

† 	�2��̃−p = + �̃k
†	�2��̃p�̃−k

† 	�1��̃−p

= − i�+k+�p− − +k−�p+,� + ¯ .

�A4d�

Here, ¯ stands for contributions which would lead to Coo-
per pairs made up of two electrons of different helicity. We
are left with the task of collecting the phase and trigonomet-
ric multiplicative factors from Eq. �A2�.

For the density-density interaction �4.3� we have to com-
pute Eq. �A1� with �=�=0. According to Eq. �A2� this in-
volves collecting the phase and trigonometric multiplicative
factors for Eqs. �A4a� and �A4b�. We find

HV
red =

1

2�
k,p

Vk−p��̃k
†�k

†�p�̃p���̃−k
† �−k

† �−p�̃−p�

= 2�
kp

Vk−pei��p−�k��cos2�p − �k

2
�+k+�p+ + +k−�p−� − sin2�p − �k

2
�+k+�p− + +k−�p+�� �A5�

from which Eq. �4.4� follows.
For the Heisenberg interaction �4.8� we have to compute Eq. �A1� with �=�=1,2 ,3. According to Eq. �A2� this involves

collecting the phase and trigonometric multiplicative factors for Eqs. �A4a� and �A4b�. We find

HH
red =

1

8�
k,p

�
j=1

3

Jk−p��̃k
†�k

†	�j��p�̃p���̃−k
† �−k

† 	�j��−p�̃−p�

=
1

8�
k,p

Jk−pei��p−�k��+k+�p− + +k−�p+ − +k+�p+ − +k−�p− + cos2�p − �k

2
�+k+�p− + +k−�p+� − sin2�p − �k

2
�+k+�p+ + +k−�p−��

�A6�

from which Eq. �4.9� follows.
Finally, the Dzyaloshinskii-Moriya interaction �4.12� involves terms of the type �A1� with �� ,��= �2,3�, �3,2�, �1,3�, and

�3,1� which in turn lead to Eqs. �A4c� and �A4d�. The calculations yields
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HDM
red =

1

8�
k,p

�
j,l=1. . .3

m=1,2

# jlmDk−p
�m� ��̃k

†�k
†	�j��p�̃p���̃−k

† �−k
† 	�l��−p�̃−p�

=
i

4�
k,p

ei��p−�k���+k+�p− − +k−�p+�	Dk−p
�1� cos

�p + �k

2
cos

�p − �k

2
+ Dk−p

�2� sin
�p + �k

2
cos

�p − �k

2



− �+k+�p+ − +k−�p−�	Dk−p
�1� sin

�p + �k

2
sin

�p − �k

2
− Dk−p

�2� cos
�p + �k

2
sin

�p − �k

2

� �A7�

from which Eq. �4.13� follows.

APPENDIX B: UNNORMALIZABILITY OF HIGHER
ANGULAR MOMENTUM ZERO MODES

We are going to show that the solutions to Eq. �6.28b�
with nonzero angular momentum and the solutions to Eq.
�6.47b� with angular momentum other than +1 are not nor-
malizable. We expand

u�
�1��',�� = �

n�0
�ein�f�,n

�1� �'� + e−in�g�,n
�1� �'��,

u�
�2��',�� = �

n�−1
�ei�n+2��f�,n

�2� �'� + e−in�g�,n
�2� �'�� , �B1�

for Eqs. �6.28b� and �6.47b�, respectively. The differential
equations mutually couples two and only two angular mo-
mentum modes. As all coefficients of the differential equa-
tion are purely real, the expansion parameters f�,n

�j� �'� and
g�,n

�j� �'� can be chosen to be either purely real or purely
imaginary numbers. Without loss of generality, we make the
former choice. In terms of the doublet U�,n

�j� = �f�,n
�j� ,g�,n

�j� �T that
represents the two coupled modes labeled by n, we find

�'U�,n
�j� �'� = −

1

'
G�,n

�j� �'�U�,n
�j� �'� . �B2a�

The matrices are given by

G�,n
�j� �'� =�2 − �j + n� �


�'�
c̃

�

�'�

c̃
j + n � . �B2b�

Hence, the doublet solution can be written as

U�,n
�j� �'� = exp�− F�,n

�j� �'��U�,n
�j� �'0� �B3a�

with

F�,n
�j� �'� = �

'0

' d'�

'�
G�,n

�j� �'� . �B3b�

The demand of normalizability reads

�
0

%

d''�U�,n
�j� �'��TU�,n

�j� �'�

= �
0

%

d''�U�,n
�j� �'0��Texp�− 2F�,n

�j� �'��U�,n
�j� �'0� 
 % .

�B4�

In the limit of large ', both matrices G�,n
�j� �'� �j=1,2� obey

the same behavior. The matrix in the exponent becomes for
both cases j=1,2,

F�,n
�j� �'� → �

'2

2mc̃
	1. �B5�

Upon exponentiation it, the condition �B4� then reads

�
0

%

d''�cosh	 '2

mc̃

��f�,n

�j� �'0��2 + �g�,n
�j� �'0��2�

� 2 sinh	 '2

mc̃

 f�,n

�j� �'0�g�,n
�j� �'0�� 
 % , �B6�

which gives a condition for the initial values

f�,n
�j� �'0� = � sgn c̃g�,n

�j� �'0� . �B7�

In the opposite limit of small ', we find for the matrix that
has to be exponentiated

F�,n
�j� �'� → G�,n

�j� �0�ln
'

'0
. �B8�

Upon exponentiating it, the condition �B4� reads
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% � �
0

%

d''
'−2�1+
�n + j − 1�2+��2/c̃2��


�n + j − 1�2 +
�2

c̃2

���f�,n
�j� �'0��2 + �g�,n

�j� �'0��2�
�n + j − 1�2 +
�2

c̃2

+ ��f�,n
�j� �'0��2 − �g�,n

�j� �'0��2��n + j − 1� � 2
�

c̃
f�,n

�j� �'0�g�,n
�j� �'0� + O�'4
�n + j − 1�2+��2/c̃2��� . �B9�

All terms that are given explicitly in the curly bracket have to vanish in order to achieve normalizability. This amounts to

f�,n
�j� �'0� = �

c̃

�
�
�n + j − 1�2 +

�2

c̃2 − �n + j − 1��g�,n
�j� �'0� . �B10�

Both conditions �B7� and �B10� are only satisfied simultaneously if n=1− j. For this mode not to be vanishing, the sign in Eq.
�B7� must be chosen �=sgn c̃, which is only compatible with Eq. �B10� for ��0. This corresponds to the solutions discussed
in Sec. VI and we conclude that these are the only normalizable zero modes for each of the blocks j=1,2.
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